This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography \& Related Technologies
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597273
IMPROVED SEPARATION OF VITAMIN B COMPLEX AND FOLIC ACID USING SOME NEW SOLVENT SYSTEMS AND IMPREGNATED TLC

Ravi Bhushana ${ }^{\text {a }}$, Vineeta Parshad ${ }^{\text {a }}$
${ }^{\text {a }}$ Chemistry Department, University of Roorkee, Roorkee, India
Online publication date: 13 January 2005

To cite this Article Bhushan, Ravi and Parshad, Vineeta(1999) 'IMPROVED SEPARATION OF VITAMIN B COMPLEX AND FOLIC ACID USING SOME NEW SOLVENT SYSTEMS AND IMPREGNATED TLC', Journal of Liquid Chromatography \& Related Technologies, 22: 10, 1607-1623
To link to this Article: DOI: 10.1081/JLC-100101756
URL: http://dx.doi.org/10.1081/JLC-100101756

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

IMPROVED SEPARATION OF VITAMIN B COMPLEX AND FOLIC ACID USING SOME NEW SOLVENT SYSTEMS AND IMPREGNATED TLC

Ravi Bhushan,* Vineeta Parshad
Chemistry Department
University of Roorkee
Roorkee 247 667, India

Abstract

TLC separation of vitamins of the ' B ' complex group and folic acid has been achieved on plates impregnated with different transition metal ions. The metal ions used were $\mathrm{Mn}^{++}, \mathrm{Fe}^{++}, \mathrm{Co}^{++}$, $\mathrm{Ni}^{++}, \mathrm{Cu}^{++}, \mathrm{Zn}^{++}$and $\mathrm{Hg}^{++} . \mathrm{hR}_{\mathrm{f}}$ values for all the vitamins, using six new solvent systems, worked out for the purpose, for each of the four different concentrations of each metal ion have been reported. The results have been discussed for each metal ion compared and the best conditions of separation have been identified.

INTRODUCTION

The water soluble group of vitamins plays a very important role in the action of certain enzymes, acting as coenzymes, along with the prevention of some diseases. Trace analysis of vitamin-B complex becomes indispensable as it is the monitor of the water soluble group. ${ }^{1}$ Also, the vitamins of the B complex group are responsible for the healthy functioning of the muscles, nerves, gastro-intestinal system, skin, and blood. Deficiency of these may lead to diseases such as beri-beri, macrocyclic anaemia, chellosis, and pernicious anaemia. There are many reports using HPLC, $,{ }^{2,3} \mathrm{GC},{ }^{4} \mathrm{HPCE},{ }^{5}$ and CZE^{6} for the separation of water soluble vitamins.

TLC separation of mixtures of vitamin-B complex, ${ }^{7}$ acid labile cobalamin, ${ }^{8}$ vitamin $\mathrm{B},{ }^{9}{ }^{9}$ vitamin $\mathrm{B}_{2},{ }^{10}$ and folic acid 11 have also been reported. Impregnating reagents have been reported to improve the separation of a number of compounds. ${ }^{12}$ TLC resolution of constituents of vitamin-B complex ${ }^{13-15}$ on impregnated plates have also been described by some workers. Nevertheless, less work has been done on separation of vitamins using impregnated TLC.

Simultaneous analysis of vitamin $B_{1}, B_{2}, B_{6}, B_{12}$, and folic acid is very important for quality control of multivitamin preparations. So, studies on the use of impregnated plates for the separation of these vitamins were made and six new, improved solvent systems were worked out; the results obtained are presented in this paper.

EXPERIMENTAL

Vitamin samples analyzed were $B_{1}, B_{2}, B_{6}, B_{12}$, and folic acid. These samples were purchased from BDH (India), Glaxo (India), and Cyanamid (India). All the impregnating reagents of AR Grade were from E. Merck (Bombay). The silica gel G (E. Merck (India) Ltd., Bombay) with CaSO_{4} (13%), iron, chloride (0.03% each), and giving pH 7 in an aqueous suspension (10%) was used, and solvents used were also from E. Merck (Bombay).

Vitamin samples were extracted from commercial tablets, capsules, and injection vials available for individual components. The tablets (containing 200 mg of vitamin) were ground to a fine powder and extracted with absolute ethanol (20 mL) thrice. The mother liquor was decanted and the crystals were washed with a little ether. The purity of each vitamin was confirmed by m.p. and by recording UV spectra. ${ }^{16}$ The yield was about 75%. The solutions of vitamins $\left(10^{-3} \mathrm{M}\right)$ were prepared in 70% ethanol.

Thin layer plates (20 cm X 20 cm X 0.5 mm) were prepared by spreading a slurry of silica gel G in distilled water in a ratio of 1:2 with the help of Stahl type applicator. The plates were then dried overnight at $50 \pm 2{ }^{\circ} \mathrm{C}$ in an oven. For impregnated plates, the slurry was prepared in aqueous solutions of different metal ions, the ions used were $\mathrm{Mn}^{++}, \mathrm{Fe}^{++}, \mathrm{Co}^{++}, \mathrm{Ni}^{++}, \mathrm{Cu}^{++}, \mathrm{Cd}^{++}, \mathrm{Zn}^{++}$, or Hg^{++} and $0.1,0.2,0.3,0.4 \%$ of each of these ions was used.

Samples were applied at the 500 ng level with the help of $100 \mu \mathrm{~L}$ Hamilton syringe. The chromatograms were developed during 70 minutes for a 10 cm run in all the solvent systems. The plates were air dried after development. Vitamin B_{12} remained as a natural bright red spot. Spots of vitamin B_{2}, B_{6}, and folic acid appeared yellow. However, vitamin B_{1} was located by exposing the plates to iodine vapors.

RESULTS AND DISCUSSION

Systematic studies were made to find out effective solvent systems for the separation of vitamins and the following six systems were found to be successful for this purpose:
A_{1} : Chloroform-n-butanol-acetic acid-ammonia (4:7:5:1;v/v);
A_{2} : Chloroform-n-butanol-water-acetic acid-ammonia (3:5:0.5:5:0.5;v/v);
A_{3} : Benzene-butylacetate-n-propanol-acetic acid-ammonia (1:4:1:5:1;v/v);
A_{4} : Carbon tetrachloride-butylacetate-propionic acid-ammonia (3:7:9:3;v/v);
A_{5} : Carbon tetrachloride-butylacetate-methanol-ammonia (1.5:4.5:7:0.5; v/v);
A_{6} : Carbon tetrachloride-butylacetate-propionic acid-methanol-water (2:3:1:0.5:3;v/v).

In order to improve the separation of vitamins, four different concentrations viz. $0.1 \%, 0.2 \%, 0.3 \%$ and 0.4% of each metal ion $\left(\mathrm{Mg}^{++}, \mathrm{Fe}^{++}\right.$, $\mathrm{Co}^{++}, \mathrm{Ni}^{++}, \mathrm{Cu}^{++}, \mathrm{Zn}^{++}, \mathrm{Cd}^{++}$, and Hg^{++}) were tried. Some of the best results, showing the influence of metal ions on chromatographic behaviour of vitamins, are shown in Tables 1-8. The results shown in each of the tables have been discussed in paragraphs and compared with those on plates without any impregnating reagents.

The $h R_{f}$ values were affected by the concentration of impregnating reagent in all the solvent systems. Each reported $h R_{f}$ value is the average of at least three or more identical runs. The spots were more compact on impregnated layers than on plain silica gel layer. The resolution possibilities of vitamins were calculated by dividing the distance between two spot centres by the sum of the two spot radii and a value of 1.50 or more was considered as a measure of complete resolution. The variation in hR_{f} values with different transition metal ions can be attributed to complex formation and variation in solubilities of complexes in different solvent systems or their different adsorption coefficients during the development of the chromatogram. The effect of each metal ion at four different concentrations in the six solvent systems is discussed below.

Impregnation with MnSO_{4}

There was a general decrease in R_{f} values of vitamins on plates impregnated with MnSO_{4} in all the nine solvent systems, in comparison to plain plates. On going from 0.1% to 0.2% impregnation, hR_{f} values increased mostly
Table 2

Sample	HR_{f} Values of Vitamins on Plates Impregnated with Different Concentrations of FeSO ${ }_{4}$																							
	A1 (\%)				A2 (\%)				A3 (\%)				A4 (\%)				A5 (\%)				A6 (\%)			
	Plain			0.3				0.3	Plain			0.3			0.2	0.3	Plain		0.2	0.3	Plain		0.2	0.3
No.	0.4				0.4				0.4				0.4				0.4				0.4			
1	$\begin{aligned} & 40 \\ & 34 \end{aligned}$	27	32	35	$\begin{aligned} & 38 \\ & 21 \end{aligned}$	30	21	23	$\begin{aligned} & 40 \\ & 42 \end{aligned}$	15	21	41	$\begin{aligned} & 50 \\ & 43 \end{aligned}$	35	34	32	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	15	18	17	$\begin{aligned} & 10 \\ & 08 \end{aligned}$	10	22	26
2	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	38	66	69	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	48	56	57	$\begin{aligned} & 68 \\ & 54 \end{aligned}$	25	50	54	$\begin{aligned} & 63 \\ & 56 \end{aligned}$	55	53	52	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	48	62	63	$\begin{aligned} & 70 \\ & 66 \end{aligned}$	75	78	67
3	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	45	60	65	$\begin{aligned} & 62 \\ & 51 \end{aligned}$	41	53	54	$\begin{aligned} & 66 \\ & 55 \\ & 5 \end{aligned}$	31	53	57	$\begin{aligned} & 60 \\ & 59 \end{aligned}$	58	57	56	$\begin{aligned} & 69 \\ & 58 \end{aligned}$	53	50	55	$\begin{aligned} & 35 \\ & 68 \end{aligned}$	55	69	70
4	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	49	70	70	$\begin{aligned} & 64 \\ & 47 \end{aligned}$		61	63	$\begin{aligned} & 73 \\ & 61 \end{aligned}$	35	60	63	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	63	61	61	$\begin{aligned} & 73 \\ & 76 \end{aligned}$	57	78	77	$\begin{aligned} & 52 \\ & 71 \end{aligned}$	71	71	73
5	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	23	45	51	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$29^{\text {T }}$	31	$\begin{aligned} & 54 \\ & 51 \end{aligned}$	19	42	50	$\begin{aligned} & 51 \\ & 48 \end{aligned}$	45	40	39	$\begin{aligned} & 12 \\ & 19 \end{aligned}$	17	20	21	$\begin{aligned} & 38^{\mathrm{T}} \\ & 49 \end{aligned}$	39	48	51

Table 3

Sample	A1 (\%)				A2 (\%)				A3 (\%)				A4 (\%)				A5 (\%)				A6 (\%)			
	Plain	0.1	0.2	0.3																				
No.	0.4				0.4				0.4				0.4				0.4				0.4			
1	$\begin{aligned} & 40 \\ & 22 \end{aligned}$	38	20	24	$\begin{aligned} & 38 \\ & 25 \end{aligned}$	24	25	26	$\begin{aligned} & 40 \\ & 42 \end{aligned}$	46	22	43	$\begin{aligned} & 50 \\ & 42 \end{aligned}$	42	35	33	$\begin{aligned} & 10 \\ & 18 \end{aligned}$	12	20	19	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	18	15	18
2	$\begin{aligned} & 65 \\ & 57 \end{aligned}$	64	55	59	$\begin{aligned} & 65 \\ & 58 \end{aligned}$	60	61	61	$\begin{gathered} 68 \\ 50 \end{gathered}$	73	49	51	$\begin{aligned} & 63 \\ & 54 \end{aligned}$	55	39	36	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	59	62	61	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	71	68	70
3	$\begin{gathered} 62 \\ 55 \end{gathered}$	61	57	58	$\begin{aligned} & 62 \\ & 53 \end{aligned}$	56	56	58	$\begin{aligned} & 66 \\ & 56 \end{aligned}$	73	51	55	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	59	58	50	$\begin{aligned} & 69 \\ & 59 \end{aligned}$	63	69	60	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	61	65	66
4	$\begin{aligned} & 68 \\ & 65 \end{aligned}$	65	65	67	$\begin{aligned} & 64 \\ & 48 \end{aligned}$	68	69	61	$\begin{aligned} & 73 \\ & 61 \end{aligned}$	76	72	60	$\begin{aligned} & 65 \\ & 64 \end{aligned}$	64	64	63	$\begin{aligned} & 73 \\ & 75 \end{aligned}$	67	71	73	$\begin{aligned} & 52 \\ & 65 \end{aligned}$	67	72	74
5	$\begin{aligned} & 60 \\ & 43 \end{aligned}$	54	34	45	50		$40^{\text {T }}$	41	$\begin{gathered} 54^{\mathrm{T}} \\ 46 \end{gathered}$	56		49	$\begin{aligned} & 51 \\ & 49 \end{aligned}$	47	40	40	$\begin{aligned} & 12 \\ & 26 \end{aligned}$	30	$23^{\text {T }}$	24	$\begin{gathered} 38^{\mathrm{T}} \\ 35 \end{gathered}$	39	34	36
T, Tailin A_{1} : chlo Butylace tetrachlo	$\begin{aligned} & \text { Sampl } \\ & \text { rm-n-1 } \\ & \text { e-n-pro } \\ & \text { e-butyl } \end{aligned}$	$\begin{aligned} & \text { le No. } \\ & \text { butanc } \\ & \text { opanol } \\ & \text { laceta } \end{aligned}$	$\begin{aligned} & \text { 1, vita } \\ & \text { ool-acet } \\ & \text { l-aceti } \\ & \text { ne-met } \end{aligned}$	amin tic ac ic aci thano	$B_{1} ; 2$, v id-amm -ammo -ammo	itami onia nia (1 nia (1	$\begin{aligned} & n B_{2} ; 3 \\ & (4: 7: 5 \\ & 1: 4: 1: 5 \\ & 1.5: 4.5 \end{aligned}$	3, vita : $1, \mathrm{v} / \mathrm{v}$:1, v/v) :7:0.5	$\begin{aligned} & \min \mathrm{B}_{6} ; \\ & y) ; \mathrm{A}_{2}: \\ & \mathrm{v}) ; \mathrm{A}_{4}: \\ & , \mathrm{v} / \mathrm{v}) ; \end{aligned}$	4, f chlor carb A_{6} :	lic ac form tetr arbon	$\begin{aligned} & \text { id; } 5, \\ & \text {-n-bu } \\ & \text { achlo } \\ & \text { tetra } \end{aligned}$	vitamin anol-wa ide-but hloride	B_{12} ater- ylac -buty	cetic ateacet			$\begin{aligned} & \text { a }(3: 5: \\ & \text { l-amm } \\ & \text { acid-m } \end{aligned}$	$\begin{aligned} & : 0.5: 5 \\ & \text { onia } \\ & \text { nethat } \end{aligned}$	$\begin{aligned} & : 0.5, \mathrm{v} \\ & (3: 7: 9: \\ & \text { nol-wa } \end{aligned}$	v); A_{3} 3, v/v) ter (2:3	$\begin{aligned} & 3: \text { be } \\ & ; \mathrm{A}_{5} \\ & 3: 1: 0 \end{aligned}$	$\begin{aligned} & \text { zene- } \\ & \text { carb } \\ & 5: 3, ~ v \end{aligned}$	

Table 4

T, Tailing. Sample No. 1, vitamin $B_{1} ; 2$, vitamin $B_{2} ; 3$, vitamin $B_{6} ; 4$, folic acid; 5, vitamin B_{12}
A_{1} : chloroform-n-butanol-acetic acid-ammonia $(4: 7: 5: 1, v / v) ; A_{2}$: chloroform-n-butanol-water Butylacetate-n-propanol-acetic acid-ammonia $(1: 4: 1: 5: 1, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{4}$: carbon tetrachloride-butylacetate-propionic acid-ammonia (3:7:9:3, v/v); A A_{5} : carbon

Table 5
$\mathbf{H R}_{\mathrm{f}}$ Values of Vitamins on Plates Impregnated with Different Concentrations of CuSO_{4}
T, Tailing. Sample No. 1, vitamin $B_{1} ; 2$, vitamin $B_{2} ; 3$, vitamin $B_{6} ; 4$, folic acid; 5, vitamin B_{12}.
$\begin{aligned} & \mathrm{A}_{1} \text { : chloroform-n-butanol-acetic acid-ammonia }(4: 7: 5: 1, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{2}: \text { chloroform-n-butanol-water-acetic acid-ammonia }(3: 5: 0.5: 5: 0.5, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{3}: \text { benzene- } \\ & \text { Butylacetate-n-propanol-acetic acid-ammonia }(1: 4: 1: 5: 1, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{4}: \text { carbon tetrachloride-butylacetate-propionic acid-ammonia }(3: 7: 9: 3, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{5}: \text { carbon } \\ & \text { Tetrachloride-butylacetate-methanol-ammonia }(1.5: 4.5: 7: 0.5, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{6} \text { : carbon tetrachloride-butylacetate-propionic acid-methanol-water }(2: 3: 1: 0.5: 3, \mathrm{v} / \mathrm{v}) \text {. }\end{aligned}$
($1 / \Lambda$ ' $\varepsilon: C \cdot 0: I: \varepsilon: Z)$
Table 6
 A_{1}. chloroform-n-butanol-acetic acid-ammonia (4:7:5:1, v/v); A_{2} : chloroform-n-butanol-water-acetic acid-ammonia ($\left.3: 5: 0.5: 5: 0.5, \mathrm{v} / \mathrm{v}\right) ; \mathrm{A}_{3}:$ benzene-
Butylacetate-n-propanol-acetic acid-ammonia $(1: 4: 1: 5: 1, \mathrm{v} / \mathrm{v}) ; \mathrm{A}_{4}$: carbon tetrachloride-butylacetate-propionic acid-ammonia $(3: 7: 9: 3, \mathrm{v})$; A_{5} : carbon tetrachloride-butylacetate-methanol-ammonia (1.5:4.5:7:0.5, v / v); A_{6} : carbon tetrachloride-butylacetate-propionic acid-methanol-water (2:3:1:0.5:3, v / v).
Table 7

Table 8

$\mathbf{H R}_{\mathbf{f}}$ Values of Vitamins on Plates Impregnated with Different Concentrations of $\mathbf{H g S O}_{\mathbf{4}}$																								
	A1 (\%)				A2 (\%)				A3 (\%)				A4 (\%)				A5 (\%)				A6 (\%)			
Sample	Plain	0.1	0.2	0.3																				
No.	0.4				0.4				0.4				0.4				0.4				0.4			
1	$\begin{aligned} & 40 \\ & 19 \end{aligned}$	16	21	24	$\begin{aligned} & 38 \\ & 17 \end{aligned}$	15	17	19	$\begin{aligned} & 40 \\ & 37 \end{aligned}$	32	40	39	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	36	34	30	$\begin{aligned} & 10 \\ & 19 \end{aligned}$	12	15	17	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	15	10	11
2	$\begin{aligned} & 65 \\ & 44 \end{aligned}$	25	42	46	$\begin{aligned} & 65 \\ & 41 \end{aligned}$	31	40	44	$\begin{aligned} & 68 \\ & 50 \end{aligned}$	52	55	49	$\begin{aligned} & 63 \\ & 43 \end{aligned}$	52	48	48	$\begin{aligned} & 62 \\ & 54 \end{aligned}$	50	45	61	$\begin{aligned} & 70 \\ & 61 \end{aligned}$	71	57	60
3	$\begin{aligned} & 62 \\ & 50 \end{aligned}$	37	47	50	$\begin{aligned} & 62 \\ & 52 \end{aligned}$	35	49	55	$\begin{aligned} & 66 \\ & 51 \end{aligned}$	50	69	52	$\begin{aligned} & 60 \\ & 38 \end{aligned}$	56	55	41	$\begin{array}{r} 69 \\ 61 \end{array}$	60	65	60	$\begin{aligned} & 35 \\ & 47 \end{aligned}$	47	49	50
4	$\begin{aligned} & 68 \\ & 41 \end{aligned}$	45	40	45	$\begin{aligned} & 64 \\ & 50 \end{aligned}$	41	53	52	$\begin{aligned} & 73 \\ & 57 \end{aligned}$	56	66	59	$\begin{aligned} & 69 \\ & 50 \end{aligned}$	59	51	52	$\begin{aligned} & 73 \\ & 73 \end{aligned}$	64	69	71	$\begin{aligned} & 52 \\ & 49 \end{aligned}$	36	66	67
5	$\begin{aligned} & 60 \\ & 29 \end{aligned}$	22	24	31	$\begin{aligned} & 50 \\ & 38 \end{aligned}$	27	$36^{\text {T }}$	40	$\begin{aligned} & 54^{\mathrm{T}} \\ & 43 \end{aligned}$			43*	$\begin{aligned} & 51 \\ & 33 \end{aligned}$	39	37	34	$\begin{aligned} & 12 \\ & 21 \end{aligned}$	19	10	20	$\begin{gathered} 38^{\mathrm{T}} 20 \\ 16 \end{gathered}$	01012		

* Slight tailing; T, Tailing. Sample No. 1, vitamin $B_{1} ; 2$, vitamin $B_{2} ; 3$, vitamin $B_{6} ; 4$, folic acid; 5 , vitamin B_{12}.

[^0] tetrachloride-butylacetate-methanol-ammonia (1.5:4.5:7:0.5, v/v); $\mathrm{A}_{6}:$ carbon tetrachloride-butylacetate-propionic acid-methanol-water (2:3:1:0.5:3, v/v).
in solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, and A_{4}, while these values decreased in solvent A_{6}. No definite trend was observed with solvent system A_{5}. Varying the concentration of MnSO_{4} from 0.2% to $0.3 \%, \mathrm{hR}_{\mathrm{f}}$ values, in general, increased in all the solvent systems except in solvent system A_{4}, where these values decreased. Further, on increasing the concentration to 0.4%, an increase in hR_{f} values was observed in solvent systems $\mathrm{A}_{3}, \mathrm{~A}_{4}$, and A_{5}.

It is evident from Table 1 that vitamins which were not resolved on plain plates in different solvent systems are resolved after impregnation with MnSO_{4}. These are vitamin B_{6} and B_{12} in solvent system A_{1} (at 0.1%), in solvent system A_{6} (at $0.2 \%, 0.3 \%$ and 0.4%), vitamin $\mathrm{B}_{2}, \mathrm{~B}_{6}$, and B_{12} in solvent system A_{2} (at $0.1 \%, 0.3 \%$ and 0.4%); vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.1% to 0.4%); vitamin B_{1} and B_{12} in solvent system A_{5} (at 0.1% to 0.4%) and vitamin B_{1}, B_{2}, B_{6}, folic acid and B_{12} in solvent system A_{4} (at 0.1% to 0.4%). Best results were achieved at 0.3% of MnSO_{4} with all the solvent systems except A_{1}.

Impregnation with FeSO_{4}

The $h R_{f}$ values were generally decreased with FeSO_{4} impregnation in comparison to plain plates (Table 2) in all the solvent systems except solvent system A_{6} where these values generally increased. An increase of concentration of impregnating reagent from 0.1% to 0.2% resulted into a general decrease in R_{f} values in solvent system A_{4}, while an increase in these values was observed in solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{5}$, and A_{6}. On going from 0.2% to 0.3%, these values generally decreased in solvent system A_{4} only, in all the other solvent systems these values increased subsequently. While, from 0.3% to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values decreased in all the solvent systems except in solvent system where these values increased (in contrast 0.3%).

Table 2 shows that impregnation of FeSO_{4} resulted into separation of following vitamins in comparison to plain plates: vitamin B_{6} and B_{12} in solvent systems A_{1} and A_{6} (at 0.1% to 0.4%); vitamin $\mathrm{B}_{2}, \mathrm{~B}_{6}$, and folic acid in solvent system A_{2} (at 0.1% to 0.4%); vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.1% to 0.4%); vitamin B_{1}, B_{2}, B_{6}, folic acid, and B_{12} (at 0.1% to 0.4%) in solvent system A_{4} (at 0.1% to 0.4%) and vitamin B_{1} and B_{12} in solvent system (at 0.3%). The best results were obtained at 0.1% impregnation of FeSO_{4} in all the solvent systems except solvent system A_{5}.

Impregnation with CoSO_{4}

For most of the vitamins, hR_{f} values decreased in comparison to plain plates when CoSO_{4} was used as impregnating reagent, in comparison to plain plates (Table 3) except that these were increased with solvent system A_{6}. On
comparing the effect of different concentrations of CoSO_{4}, it was found that at 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values increased in solvent systems A_{2} and A_{5}, decreased in solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, and A_{6}. On increasing the concentration to 0.3%, $h R_{f}$ values mostly increased in every solvent system except solvent systems A_{4} and A_{5}, where a decrease in these values was observed. Further increasing the concentration to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values increased only in solvent system A_{4} and decreased mostly in all the other solvent systems.

Successfully resolved vitamins which were not resolved on plain plates (Table 3) are: vitamin B_{6} and B_{12} in solvent systems in A_{1} and A_{6} (at 0.1% to 0.4%); vitamin B_{2}, B_{6} and folic acid in solvent system A_{2} (at $0.1 \%, 0.2 \%$ and 0.4%); vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.3% and 0.4%); vitamin B_{1}, B_{2}, B_{6}, folic acid, B_{12} in solvent system A_{4} (at $0.1 \%, 0.3 \%, 0.4 \%$) and vitamin B_{1} and B_{12} in solvent system A_{5} (at 0.1% to 0.4%). Each vitamin was resolved at 0.1% in solvent systems $\mathrm{A}_{2}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$, and A_{6}.

Impregnation with NiSO_{4}

Decreases in hR_{f} values were observed, in general, using NiSO_{4} as impregnating reagent with all the solvent systems in comparison to plain plates (Table 4) except for solvent systems A_{5} and A_{6} where these values generally increased in most of the cases. On changing the concentration from 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values generally increased in solvent systems $\mathrm{A}_{2}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$, and generally decreased in all the other solvent systems, i.e., solvent systems A_{3} and A_{6}. No regular trend was observed with solvent system A_{1}. Varying the concentration from 0.2% to $0.3 \%, \mathrm{hR}_{\mathrm{f}}$ values decreased with solvent systems A_{3}, A_{4}, and A_{5}, and increased with rest of the solvent systems. Whereas, from 0.3% to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values increased in solvent systems $\mathrm{A}_{3}, \mathrm{~A}_{5}$ and decreased with other solvent systems. It was found that using solvent system A_{4}, there was a general decrease in hR_{f} values from 0.1% to 0.4%.

Table 4 shows the resolved vitamins on impregnated plates with NiSO_{4} which were not resolved earlier on plain plates. These vitamins are vitamin B_{6} and B_{12} in solvent systems A_{1} and A_{6}. (at 0.1% to 0.4%); vitamin B_{2}, B_{6} and folic acid in solvent system A_{2} (at 0.1% to 0.4%); vitamin B_{2}, and folic acid in solvent system A_{3} (at 0.1% to 0.4%); all the vitamins in solvent system A_{4} (at $0.1 \%, 0.2 \%$ and 0.3%); vitamin B_{1} and B_{12} in solvent system A_{5} (at 0.1%). Best results were achieved at 0.1% with all the solvent systems except A_{3}.

Impregnation with CuSO_{4}

Impregnation with CuSO_{4} resulted in a general decrease of hR_{f} values in comparison to plain plates (Table 5) in all the solvent systems except solvent
systems A_{5} and A_{6}. On going from 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values, in general, increased in solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{3}$, and A_{5}. These values decreased in all the other solvent systems. From 0.2% to $0.3 \%, \mathrm{hR}_{\mathrm{f}}$ values generally decreased in solvent systems $\mathrm{A}_{2}, \mathrm{~A}_{4}$, and A_{5}. Increase in these values was found in solvent systems A_{3} and A_{6}. Further, from 0.3% to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values in general decreased in all the solvent systems except in solvent system A_{4} where these values increased.

Table 5 shows the vitamins which resolved with CuSO_{4} impregnation and had not resolved with plain plates in the same solvent system. These are vitamin B_{6} and B_{12} in solvent systems A_{1} and A_{6} (at 0.1% to 0.4%); vitamin B_{2}, B_{6}, and folic acid in solvent system A_{2} (at 0.3%); vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.3% and 0.4%); vitamin $\mathrm{B}_{2}, \mathrm{~B}_{6}$, folic acid, and B_{12} in solvent system A_{4} (at 0.1% to 0.4%); vitamin B_{1} and B_{12} in solvent system A_{5} (at $0.1 \%, 0.2 \%$ and $0.4 \%)$. Best results were obtained at 0.4% in all the solvent systems except A_{2}.

Impregnation with $\mathbf{Z n S O}_{4}$

$h \mathrm{R}_{\mathrm{f}}$ values decreased in most of the cases with ZnSO_{4} impregnation in comparison to plain plates (Table 6) in all the developed systems except solvent system A_{6} where these values increased mostly. While studying the effect of different concentrations of ZnSO_{4} it was found that, on going from 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values increased mostly in solvent systems $\mathrm{A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, and A_{5}. These values decreased mostly in solvent systems A_{1} and A_{6}. Varying the concentration from 0.2% to 0.3%, a decrease in hR_{f} values was observed mostly in solvent systems A_{3} and A_{4}. These values increased in all the other solvent systems. Further increasing the concentration to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values decreased in all the solvent systems.

It is evident, from Table 6, that vitamins which were not resolved on plain plates in various solvent systems are resolved after impregnation with ZnSO_{4}. These are vitamin B_{6} and B_{12} in solvent systems A_{1} and $A_{6}(0.1 \%$ to $0.4 \%)$; vitamin B_{2}, B_{6}, and folic acid in solvent system $A_{2}(0.1 \%$ to $0.4 \%)$; vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.1% and 0.3%); vitamin B_{1}, B_{2}, B_{6}, folic acid, and B_{12} in solvent system A_{4} (at $0.1 \%, 0.3 \%$ and 0.4%); vitamin B_{1} and B_{12} in solvent system A_{5} (at $0.1 \%, 0.2 \%$ and 0.4%). Best results were obtained at 0.3% impregnation in solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, and A_{6}.

Impregnation with CdSO_{4}

There was a general decrease in hR_{f} values with CdSO_{4} impregnation in all the solvent systems in comparison to plain plates (Table 7). On going from 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values, in general, decreased in solvent systems A_{4} and A_{6}
while general increase in hR_{f} values was observed in solvent systems $\mathrm{A}_{2}, \mathrm{~A}_{3}$, and A_{5}. On increasing the concentration from 0.2% to $0.3 \%, \mathrm{hR}_{\mathrm{f}}$ values increased in solvent system A_{2} and A_{6} and decreased in solvent systems $\mathrm{A}_{3}, \mathrm{~A}_{4}$, and A_{5}. Further changing the concentration from 0.3% to $0.4 \% \mathrm{hR}_{\mathrm{f}}$ values decreased in all the solvent systems except A_{3} where an increase in $h R_{f}$ values was observed.

Table 7 shows the vitamins which where not resolved earlier on plain plates. These are vitamins B_{6} and B_{12} in solvent systems A_{1} and A_{6} (at 0.1% to 0.2%); vitamin B_{2}, B_{6}, and folic acid in solvent system A_{2} (at $0.1 \%, 0.3 \%$ and 0.4%); vitamin B_{2} and B_{6} in solvent system A_{3} (at 0.1% and 0.2%); vitamin B_{1}, $\mathrm{B}_{2}, \mathrm{~B}_{6}$, folic acid, and B_{12} in solvent system A_{4} (at $0.1 \%, 0.3 \%$ and 0.4%); vitamin B_{1} and B_{12} in solvent system A_{5} (at 0.1% to 0.4%). It was interesting to find out that 0.1% to $0.4 \%, \mathrm{hR}_{\mathrm{f}}$ values decreased in solvent system A_{4}. Best results were achieved at 0.4% in all solvent systems except solvent system A_{3}.

Impregnation with $\mathbf{H g S O}_{\mathbf{4}}$

It was observed, in general, that use of HgSO_{4} as impregnating reagent resulted in decrease in hR_{f} values with all the solvent systems in comparison to plain plates (Table 8), except solvent A_{6} where $h R_{f}$ values increased in general. Increasing the concentration from 0.1% to $0.2 \%, \mathrm{hR}_{\mathrm{f}}$ values increased in solvent systems $\mathrm{A}_{3}, \mathrm{~A}_{4}$, and A_{5}. On going from 0.2% to 0.3%, these values decreased in solvent systems A_{3} and A_{4}. A general increase was found in solvent systems A_{1}, $\mathrm{A}_{2}, \mathrm{~A}_{5}$, and A_{6}. Further, varying the concentration to 0.4%, a decrease in hR_{f} values was observed in solvent system A_{5} where these values were increased. A decrease in $h R_{f}$ values from 0.1% to 0.4% was found in solvent system A_{4}.

It is clear from Table 8 that vitamins which were not resolved on plain plates in different solvent systems are resolved after impregnation with HgSO_{4}. These are vitamins B_{6} and B_{12} in solvent systems A_{1} and A_{6} (at 0.1% to 0.4%); vitamin B_{2}, B_{6}, and folic acid in solvent system A_{2} (at $0.1 \%, 0.2 \%$ and 0.3%); vitamin B_{2} and B_{6} in solvent system A_{3} (at $0.1 \%, 0.2 \%$ and 0.3%); vitamin B_{1}, B_{2}, B_{6}, B_{12}, and folic acid in solvent system A_{4} (at 0.1% to 0.4%); vitamin B_{1} and B_{12} in solvent system A_{5} (at $0.1 \%, 0.2 \%$ and 0.3%). Best results were obtained at 0.1% impregnation with solvent systems $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{4}$, and A_{6}.

Better resolution, with disappearance of tailing in most of the cases, with general decrease in hR_{f} values, was observed on impregnated plates as compared to untreated ones in all the developed solvent systems. All the concentrations of CoSO_{4} in solvent system A_{1} were unsuccessful as there was incomplete/poor resolution of vitamins under study, either due to tailing or close $h R_{f}$ values.

Sometimes diffused spots were also obtained. 0.2% Impregnation of each metal ion in all the six solvent systems was proved to be relatively poor in resolving vitamins on thin silica plates.

It can be assumed that, at these concentrations, metal ions are influencing the chromatographic behavior by complex formation. The complex formed changed the adsorption/partition characteristics during the development of chromatograms and better resolution of vitamin-B complex and folic acid was achieved. It can also be assumed that weak electron donation from N, O, or S atoms or π electron donation from the aromatic ring of the vitamins to the metal ion affected the chromatographic behavior. Vitamin B_{12} is a porphyrin derivative and porphyrins are known to form metallic complexes with metals such as manganese, iron, copper, and zinc. ${ }^{16}$

On the basis of observed results, it was inferred that CuSO_{4} at 0.4% impregnation in all the employed solvent systems (except solvent system A_{2}) resulted in the simultaneous resolution of constituents of vitamin-B complex and folic acid with appreciable difference in hR_{f} values. Very sharp and compact spots were obtained with CuSO_{4}, providing improved resolution. Different concentrations of metal ions providing successful/improved resolution in the developed solvent systems have been shown in Table 5.

Constituents of vitamin-B complex and folic acid can be separated and identified in pharmaceutical and multivitamin preparations with less running time as reported earlier. ${ }^{15}$ By using any of the above developed solvent systems, vitamins which were not resolved on the untreated plates were resolved with most of the impregnating reagents.

ACKNOWLEDGMENTS

The authors are thankful to the Council of Scientific and Industrial Research (CSIR) of New Delhi, India, for providing financial assistance including a stipend (to Vineeta Parshad). Financial assistance from the University Grants Commission of India, New Delhi, is also gratefully acknowledged.

REFERENCES

1. E. Stahl, Thin Layer Chromatography, 2nd Ed., Springer Verlag, Berlin, 1969, p. 293.
2. D. Blanco, L. A. Sanchez, M. D. Gutierrez, J. Liq. Chromatogr., 17, 15251540 (1994).
3. H. M. Zhao, Z. P. Zhou, P. Wang, Sepn., 11, 249-251 (1994).
4. E. M. Patzer, D. M. Hilker, J. Chromatogr., 135, 489-92 (1977).
5. U. Jegle, J. Chromatogr., 6, 495-501 (1993).
6. R. Huopalahti, J. Sunell, J. Chromatogr., 636, 133-136 (1993).
7. H. Thielemann, Pharmazie, 36, 574 (1980).
8. R. B. Silverman, D. Dolphin, J. Sunell, J. Chromatogr., 94, 273-274 (1988).
9. J. D. Mahuren, S. P. Coburn, Anal. Biochem., 8, 246-249 (1977).
10. W. Funk, P. Derr, J. Sunell, J. Planar Chromatogr., 3, 149-152 (1990).
11. Igolnikova, N. M. Akhmedkodzhaeva, A. N. Svechinkova, Pharm. Zh., 3, 92-93 (1992).
12. G. Grassini-Strazza, V. Carunchio, A. M. Girelli, J. Chromatogr., 466, 1-35 (1989).
13. R. Bhushan, I. Ali, Arch. Pharm., 30, 1186-1187 (1987).
14. P. Y. Yin, H. N. Li, C. T. Yan, Sepu., 12, 35-36 (1994).
15. R. Bhushan, V. Parshad, Biomed. Chromatogr., 8, 196-198 (1994).
16. S. F. Dyke, The Chemistry of Vitamins, K. W. Bentley, ed., Interscience Publishers, London, 1965, p. 4.

Received June 3, 1998
Accepted June 24, 1998
Manuscript 4895-TLC

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081JLC100101756

[^0]:

